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Problem

Describe the symmetry groups of the Platonic solids, with proofs, and with an emphasis

on the icosahedron.
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Figure 1: The five Platonic solids.

1 Introduction

The first group of people to carefully study Platonic solids were the ancient Greeks.
Although they bear the namesake of Plato, the initial proofs and descriptions of such solids
come from Theaetetus, a contemporary. Theaetetus provided the first known proof that there
are only five Platonic solids, in addition to a mathematical description of each one. The five
solids are the cube, the tetrahedron, the octahedron, the icosahedron, and the dodecahedron.
Euclid, in his book FElements also offers a more thorough description of the construction and
properties of each solid. Nearly 2000 years later, Kepler attempted a beautiful planetary
model involving the use of the Platonic solids. Although the model proved to be incorrect,
it helped Kepler discover fundamental laws of the universe. Still today, Platonic solids are
useful tools in the natural sciences. Primarily, they are important tools for understanding
the basic chemistry of molecules. Additionally, dodecahedral behavior has been found in the
shape of the earth’s crust as well as the structure of protons in nuclei.



The scope of this paper, however, is limited to the mathematical dissection of the sym-
metry groups of such solids. Initially, necessary definitions will be provided along with
important theorems. Next, the brief proof of Theaetetus will be discussed, followed by a
discussion of the broad technique used to determine the symmetry groups of Platonic solids.
A couple of major ideas which will simplify these proofs are the notions of dual solids and
point reflection. To finish, this technique and these ideas will be applied to the specific
Platonic solids with a focus on the case of the icosahedron.

2 Defintions and Theorems

Defintion 1 (Platonic solid) A Platonic solid is a convex reqular polyhedron that satisfies
the following three conditions (1) all its faces are convex regular polygons (2) none of its
faces intersect except at their edges (3) the same number of faces meet at each vertes.

Defintion 2 (Dual solid) The dual of a Platonic solid is computed by drawing the lines
that connect the midpoints of the sides surrounding each polyhedron vertex, and constructing
the corresponding tangential polygon.

Ezxample: Doing this procedure for a cube constructs an octahedron. Therefore the cube and
octahedron are dual solids. Similarly, the tetrahedron is dual to itself, and the icosahedron
is dual to the dodecahedron.

Defintion 3 (Point reflection) A reflection in a point P is a transformation of the plane
such that the image of the fized point P is P and for all other points, the image of A is A’
where P is the midpoint of line segment AA’. In essence, it is a linear transformation from
R3 to R® which sends each vector x to -X.

Defintion 4 (Symmetry planes and axes) Let X be an object in Euclidean 3-space. The
symmetry planes P of X are essentially mirrors in which the obejct X can be reflected
while appearing unchanged. The symmetry axes [ of the object X are lines about which
there exists 0 € (0, 2rt) such that the object X can be brought, by rotating through some angle
0, to a new orientation X6@, such that X appears unchanged.

Defintion 5 (Symmetry groups) The rotational symmetry group of an object X, denoted
Sy (X), is the group of symmetry of X wherein only rotation is allowed. The full symmetry
group of an object X, denoted S(X), is the group of symmetry of X wherein both rotations
and reflections are included.

Theorem 1 (Theaetetus’ Thm) There are exactly 5 Platonic solids: (1) cube (2) tetrahedron
(3) octahedron (4) icosahedron (5) dodecahedron.



Proof. First note that at least three faces must intersect at any given vertex of a Platonic
solid. The incident angles at each vertex must also sum to less than 360° to prevent concavity
and flatness. Since Platonic solids are formed by regular polygons, it is necessary to examine
what occurs for regular n-gons that are incident at a given vertex.

Now, if n = 3, there is an equilateral triangle with regular angle of 60°. In this case, only
three, four, or five equilateral triangles may intersect at a given vertex. Anything above six
contradicts the definition of a Platonic solid by being either flat or concave. Next, if n = 4,
there is a square with regular angle of 90°. Exactly three squares can intersect at a given
vertex, no more, no less. If more, the solid will violate flatness or concavity. If less, there
are not sufficient faces to form a solid. Similarly if n = 5, there is a pentagon with regular
angle of 108°, and once again exactly three pentagons may intersect at a given vertex, no
more, no less. Lastly, if n is greater than 5, all regular angles for these n-gons are greater
than or equal to 120°. Therefore the minimum of three necessary incident faces will always
produce an angle greater than or equal to 360°, thereby violating the necessary conditions
of a Platonic solid.

Thus, there are exactly five Platonic solids because any given Platonic solid is uniquely
defined by the number and type of regular polygons which comprise it.

Theorem 2 Dual solids have the same symmetry group.

Proof. Since dual polyhedra share the same symmetry planes and symmetry axes, it imme-
diately follows that they share the same symmetry group.

3 Broad Technique

In summary of the main points above, a few things are now clear. Primarily, there are
exactly five Platonic solids as seen by Theorem 1. This fact, in conjunction with the
Ezxample and Theorem 2, demonstrates that to describe all Platonic solids, it is sufficient
simply to describe the symmetry groups of the cube, the tetrahedron, and the icosahedron.

Therefore, to accomplish this task, we must find both the rotational and full symmetry
groups for each of the aforementioned Platonic solids: (i) the cube (ii) the tetrahedron and
(iii) the icosahedron.

4 Applied Technique

4.1 Cubes and Octahedrons

Proposition 1: The cube and octahedron both have rotational symmetry groups which are
isomorphic to Sy.



Proof. In order to prove this proposition let us first clarify certain references. As seen in
Figure 2 below, let L, M, and N represent various axes of rotation. There are three axes
similar to L, which produce nine rotations. There are also six axes similar to M producing
six rotations. Finally, there are four main diagonals similar to N, through which the cube
may be rotated by 120° and by 240°. This accounts for another eight rotations. Therefore,
in addition to the identity element, all of the above rotations sum to twenty-four symmetries.

N L

Figure 2: Various axes of the cube.

Observe now that all rotational symmetries of the cube simply permute the four main
diagonals of the cube. Now label each corner of the cube as shown in Figure 2, and let N,
denote the diagonal between the point k& and &', where 1 < k < 4. Each rotational symmetry
mentioned before permutes Ny, Ny, N3, and N4 which is nothing other than a permutation
of the numbers 1, 2, 3, and 4. Referring once again to Figure 1, notice that the rotation r
(the rotation anti-clockwise by 90°) sends Ny to Ny, Ny to N3, N3 to Ny, and Ny to N;. This
is therefore equivalent to the 4-cycle (1234). The same basic process may be worked out for
all other rotations of the cube.

Recall S,.(C) as the rotational symmetry group for the cube C, and denote ¢: S,.(C) —
Sy for the function described above. Since we are dealing with rotations, clearly ¢(xy) =
¢(x)¢p(y) implying that ¢ is a homomorphism. Then, all that remains is checking that ¢ is a
bijection. To do this, remember that a surjection between two finite sets which have the same
number of elements must be a bijection. We already know S,(C') has twenty-four elements,
and Sy is known to have twenty-four elements as well. Therefore, we just need to show that
¢ is surjective. Both (1234) and (12) lie in ¢(S,(C)). Additionally, ¢(S,(C)) is a subgroup
of Sy since ¢ sends the multiplication of S,.(C') to that of Sy. Thus, each permutation which
can be formed from (1234) and (12) must belong to ¢(S,(C)). The elements (1234) and



(12) are known to generate all of Sy [Theorem 6.3, Armstrong, p. 28]. Therefore we have
#(S,(C)) = S4. In conclusion, we have our bijection, and have proven that both the cube
and octahedron (thanks to Theorem 2) have rotational symmetry groups isomorphic to Sy.

Corollary 1: The full symmetry group of the cube and octahedron is isomorphic to Sy X Zs

Proof. This corollary is a direct result of Proposition 1, Theorem 2, and the definition
of point reflection. For further explication, refer to [Armstrong, p. 55].

4.2 Tetrahedrons

Proposition 2: The tetrahedron has rotational symmetry group which is isomorphic to Ay
and full symmetry group isomorphic to Sy.

Proof. Let T be a tetrahedron such that S,.(7") and S(7') are the rotational and full symmetry
groups, respectively. Now let us count the number of symmetries for our regular tetrahedron
T. Note that there are four positions to which the first vertex may go, by either rotation
or reflection. Once we fix the first vertex, then there are three remaining points where the
second vertex can go by given rotations. Having fixed the first two vertices, there are still two
places for the third vertex to go, due to a reflection. Finally, the last vertex has simply one
place left to go. Therefore the total number of symmetries for the tetrahedron is 4 x 3 x 2 x 1
which is 4!, or twenty-four, total symmetries.

Figure 3: Labeled vertices of the tetrahedron.

Now, let us label each of the vertices with 1, 2, 3, and 4, as seen in Figure 3. The
identity then, in cyclic notation is simply (), which is both a reflection and a rotation. The
transposition (12) is clearly a reflection. This reflection is performed through the plane
containing the center of one edge and the vertex of a face containing the edge. All five other
transpositions may be performed in a similar manner. Now, looking at the 3-cycles, we see
that (123) is a rotation. This rotation takes the tetrahedron through the symmetry axis that



is formed by a vertex and the centroid of a face not containing the vertex, at an angle of 120°
in either clockwise or anti-clockwise directions. All seven other 3-cycles may be found by
a similar method. Additionally, examining (2,2)-cycles, we find that (12)(34) is a rotation.
Here the axis of rotation cuts from a center of an edge through a center of an another edge
that is not adjacent to the first edge. The remaining two (2,2)-cycles may be similarly
obtained. The only kind of permutation that cannot be generated by a single reflection and
a single rotation are the 4-cycles. However, let us examine (1234) as the representative case
of all six 4-cycles. Now recognize that (1234) = (12)(13)(14), which involves a reflection of
the first kind simply repeated three times.

As before, it remains clear that the function described above is a homomorphism where
d(xy) = ¢(x)p(y). Therefore, using the same reasoning as in Proposition 1, we just need
to show that the function ¢ is surjective. However, we did exactly that by matching each
element in S(7') to an element in Sy. This proves that ¢ : S(T) — Sy is an isomorphism.

Lastly, notice that solely rotations are mapped to all 3-cycles in Sy by ¢. Since 3-cycles
generate A, for all n greater than or equal to 3 [Theorem 6.5, Armstrong, p.30], then
#(S,(T)) = A4. In conclusion then, we have found that S(7") is isomorphic to Sy and S,(T)
is isomorphic to Aj.

4.3 Icosahedrons and Dodecahedrons

Proposition 3: The icosahedron and dodecahedron both have rotational symmetry groups
which are isomorphic to As.

Proof. For this last examination of symmetry groups of Platonic solids, we will focus on the
case of the icosahedron. To familiarize ourselves with the form, note that an icosahedron
has thirty edges, twenty faces, and twelve vertices. We will focus on the symmetry axes
which run through the center, joining the midpoints of opposite edges. Since there are thirty
edges, there are fifteen such axes. Now, notice that given any one of these axes, there are
precisely two other axes that are perpendicular to both the first axis and to each other. Such
a grouping of three mutually perpendicular axes will be labeled a triad. The fifteen axes
are therefore comprised of five sets of triads, which we can label 17, T5, T3, T4, and T5. In
Figure 4 below, we see the top half of an icosahedron where the endpoints of each triad have
been labeled such that points denoted by ¢ correspond to T;.

Rotating the icosahedron will permute the five triads among themselves, an operation
which defines a homomorphism ¢ : S, () — S5, recalling that S,.(/) represents the rotation
group of the icosahedron, I. Now, let us compute the order of S,(I). To begin with, there
is the simple identity e. We have also already noted the symmetry axes which run through
edges, and there are fifteen of these. The icosahedron can only be rotated through 180° in
these edge axes to preserve itself, so the edge axes account for 15 x 1, or 15 rotations. Next,
note that there are six symmetry axes which connect opposite vertices, since there are only
twelve vertices. Each axis, however, may be rotated through either 72°, 144°, 216°, or 288°
and still preserve the icosahedron. Thus, these axes account for 6 x 4, or 24 rotations. Lastly,
we consider the symmetry axes which run through the twenty faces of the icosahedron. Since



these axes cut through opposing faces, there are ten such axes which may be rotated through
either 120° or 240°, accounting for the remaining 10 x 2, or 20 rotations. The sum total of
rotations is then 1+ 15 + 24 4+ 20 = 60 rotations, giving sixty as the order of S,(I).
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Figure 4: Top half of an icosahedron with labeled endpoints of triads.

As we did in the case of the tetrahedron, we will now relate the rotations of S,(I) for the
icosahedron to the cyclic permutations of S5. The identity is trivial, relating e to the cyclic
notation of (). Now, let us look at the fifteen symmetry axes which run through the midpoints
of edges. In Figure 4, these correspond to a rotation about an axis through point C. This
particular rotation corresponds to the (2,2)-cycle (23)(45). Taking this as a representative
example, we can see that such rotations will be of order 2, and will always be even, since
an odd permuation multiplied by an odd permutation is always even [Armstrong, p. 29].
Similarly, recall that an even permuation multiplied by an even permutation is always even.
Next, we look at the six symmetry axes which connect opposite vertices. Such rotations
may be represented by the rotation through the point A in Figure 4. The rotations about A
will correspond to multiples of the 5-cycle (12345). All such multiples will also be even, and
extrapolating this representative example to all other vertices demonstrates that all such
rotations will correspond to even cyclic permutations. Lastly, the ten symmetry axes which
connect faces will be similar to rotations about the axis through point B. These particular
rotations about B are multiples of the 3-cycle (142) and are therefore even permuations. All
the other rotations through such face axes will be of order three, thereby encompassing all
3-cycles.

As in the previous two cases, it remains clear that the function described above is a well-
defined homomorphism where ¢(xy) = ¢(x)¢(y) (since we are just dealing with rotations).
Thus, using the same reasoning of Proposition 1 and Proposition 2, we simply need to
show that ¢ is surjective. However, we did exactly that by matching each element in S,.(I)
to an element in As, and each group has exactly 60 elements. This proves that ¢ : S,.(I) —
As is an isomorphism.

Additionally, notice that all rotations are mapped to all 3-cycles in S5 by ¢. Since 3-



cycles generate A, for all n greater than or equal to 3 [Theorem 6.5, Armstrong, p.30],
then ¢(S,(I)) = As. In conclusion, we have found that S,() is isomorphic to As, as desired.

Corollary 2: The full symmetry group of the icosahedron and dodecahedron is isomorphic
to A5 X ZQ

Proof. This corollary is a direct result of Proposition 3, Theorem 2, and the definition
of point reflection. For further discussion, please refer to [Armstrong, p. 55].

5 Summary

We have now run through the symmetry groups of the Platonic solids. We have proven
that the rotational and full symmetric groups of the cube and octahedron, the tetrahedron,
and the icosahedron and dodecahedron, are respectively S, and Sy x Zo, A4 and Sy, and Aj
and As X Zs.

The savvy use of dual solids nearly halved the amount of work necessary to describe the
solids, while a familiarity with the manipulation of cyclic permutations made the rest quite
simple. The visual tools included are absolutely necessary for the accessibility of the proofs,
and if possible, it is useful to obtain physical representations of the Platonic solids. Being
able to look at them from different angles conveys understanding of the symmetry groups in
a more concrete fashion.

Lastly, from the work we have put in to understand the Platonic solids, we may further
our study and use of the solids. More interesting results, stemming from these symmetry
groups, include the study of invariants, Cayley’s Theorem and a fuller understanding of
Sylow’s theorems.
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